Spontaneous rotation and momentum transport in tokamak plasmas
نویسنده
چکیده
Recently there has been widespread attention paid to rotation and momentum transport in tokamak plasmas. Of particular interest is spontaneous (intrinsic) toroidal rotation in plasmas without external momentum input. The strong co-current spontaneous rotation in enhanced confinement regimes, with ion thermal Mach numbers up to 0.3, may allow for resistive wall mode suppression in high-pressure ITER discharges, without requiring the use of neutral beam injection. Spontaneous rotation in L-mode discharges exhibits a complex dependence on plasma parameters and magnetic configuration compared to the relatively simple scaling of Alfven Mach number MA ~ βN observed in enhanced confinement plasmas. There is currently no comprehensive, quantitative explanation of this phenomenon. An accurate prediction of the expected rotation velocity profile from whatever neutral beam injection is available on ITER requires a detailed understanding of momentum transport. There have been extensive investigations into correlations between energy and momentum diffusivities, and whether there are systematic trends of the Prandtl number with plasma parameters. Of late, there has been vigorous theoretical activity regarding a possible momentum pinch that could help enhance the rotation in the plasma interior. There has been a renewed interest in poloidal rotation, especially in ITB discharges, which is generally found to be at odds with the predictions of neo-classical theory. This calls into question the common practice of the determination of Er from toroidal rotation measurements with the assumption of neo-classical poloidal rotation.
منابع مشابه
Observations of Anomalous Momentum Transport in Tokamak Plasmas with No Momentum Input
Anomalous momentum transport has been observed in Alcator C-Mod tokamak plasmas. The time evolution of core impurity toroidal rotation velocity profiles has been measured with a crystal x-ray spectrometer array. Following the L-mode to EDA (enhanced Dα) H-mode transition in both Ohmic and ICRF heated discharges, the ensuing co-current toroidal rotation velocity, which is generated in the absenc...
متن کاملObservation of anomalous momentum transport in tokamak plasmas with no momentum input.
Anomalous momentum transport has been observed in Alcator C-Mod tokamak plasmas through analysis of the time evolution of core impurity toroidal rotation velocity profiles. Following the L-mode to EDA (enhanced D(alpha)) H-mode transition, the ensuing cocurrent toroidal rotation velocity, which is generated in the absence of any external momentum source, is observed to propagate in from the edg...
متن کاملIntrinsic rotation driven by non-Maxwellian equilibria in Tokamak plasmas.
The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction fr...
متن کاملEvidence of inward toroidal momentum convection in the JET tokamak.
Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A sign...
متن کاملTurbulent momentum pinch of diamagnetic flows in a tokamak
The diamagnetic flow due to the radial pressure and temperature gradients and the E × B flow due to the radial electric field induce different turbulent momentum fluxes in a tokamak. As a result, when the diamagnetic and E × B flows cancel giving zero net toroidal rotation, there will still be finite momentum transport. This may be particularly important near the plasma–wall boundary where a st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007